

Hydric Soils of Minnesota

BOARD OF WATER AND SOIL RESOURCES

1

Upcoming MAPSS Events

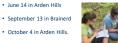
The SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change Experiment)

- July or August 2024
- Grand Rapids
- histosol hydrology, histosol restoration, ecology, etc.
- MAPSS Winter Technical Event
- December 6, 2024

We promote the understanding and wise use of Minescoty's sell resources.

www.mnsoilscientist.org

2024 MWPCP Training Courses


Introduction to Wetland Delineation and Regulations **Regional Training**

- Introduction to Wetland Delineation and Regulations:
 Arden Hills- June 10-14
 Redwood Falls- August 27-28 (6 CEC per day)
- Introduction to Wetland Delineation and Regulations: Professional Exams Brainerd September 9-13
- Introduction to Wetland Delineation and Regulations: Arden Hills- September 30-October 4

Regulatory Training

- Wetland Conservation Act (WCA) 101 Virtual Training- February 5-6 (3 online CEC per day)
- TEP Academy- St Cloud MNDOT Training Facility-April 9 (6 CEC)

MWPCP Exams will be offered at 1pm on:

2024 MWPCP Training Courses

Technical Training

- Hydric Soils- Albany City Hall and Two Rivers County Park, Stearns County- April 30 & May 1 (6 CEC per day) Wetland Restoration-McLeod County Fairgrounds- May 15-16 (12 CEC)
- Wetland Delineation Methods- Prairie Woods Environmental Learning Center- Spicer- May 29-31 (18 CEC)
- Floristic Quality Assessment (FQA) Method- MNDOT Shoreview Training Center June 17 or 18 (6 CEC per day)
- Wetland Plant ID- Lino Lakes (July 16) or Cloquet Forestry Center (July 18) (6 CEC per day)
- Antecedent Precipitation Tool- St Cloud MNDOT Training Center-October 22 (2 sessions) (3 CEC per session)

5

Registration Information

- April- July classes will open the week of March 11th.
- · August-October classes will open the week of July 1st.
- Email will go out to our contact lists a couple of weeks prior
- Email bwsr.mwpcp@state.mn.us to be added to list MWPCP maintains a waitlist for all full classes

Certification Updates

- COVID-related continuing policies lapsed
- Need 18 continuing education hours (6 online) Current renewal period ends on December 31, 2024 for individuals who passed exams in 2021.
- Do not need to report MWPCP classes
- Use Credit Reporting Form
- List of approved classes on MWPCP page
- If not listed, use Credit Determination Form · Notify us if you change jobs or email

7

soil indicators for HGM wetland types Role of landscape & geomorphic position in hydric soil development

Agenda

Introduction to afternoon field sites

Lunch (bag lunch on your own) then meet at field
site after lunch

Field stations

8

What is Soil?

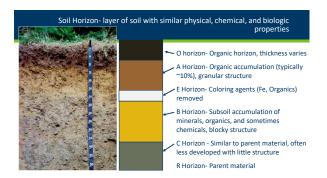
- Natural body that occurs on the land surface, occupies space, and is characterized by one or both of the following:
- · Horizons or layers, or
- The ability to support rooted plants in a natural environment
- Upper limit is air or shallow (>2.5 m) water Lower limit is either bedrock or the limit of biological activity
- Lower limit for classification set at an arbitrary 2 m

Two Categories of Soil Material - Mineral Soil/Horizons

Mineral horizons

• Primarily sand, silt, and clay, with varying amounts of organic matter

• consists of mostly decomposed organic material

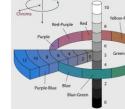


- Properties that are important to hydric soil development and recognition:
- Horizons- layer of soil with similar physical, chemical, and biologic properties
- Texture- relative proportion of soil particles (sand, silt, clay)

 Structure- arrangement of solid parts and of the pore spaces locate between them

- Permeability- ability of water to move through a material
- Color- hue, value, chroma
- Organic matter- percent, thickness, and level of organic decomposition
- Drainage- presence of natural and human drainage on a landscape

11



And an

	Coloring Agents in Soil
Organic matter Otherill mask all other coloring agents	
OM will mask all other coloring agents. Iron	
 brown colors are the result of Fe oxide stains coating individual particles 	
 Manganese resulting in a very dark black or purplish black col 	or
Calcium	Constant and Constant of Constant
 Resulting in lighter colors, chemically unique 	
 Lack of coatings 	
Color of the mineral soil grains (stripped)	

Munsell Color System • Hue- the spectrum color • Value- lightness or darkness • Chroma- "purity" or grayness of color Hue Value Chroma Pur

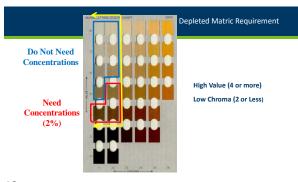
14

• Matrix (predominant) color • Color of redoximorphic features Contrast, abundance, location, and size of redox features What is the percent of redox? 30%

	CHARTS FOR ESTIMATING PROPORTIONS OF MOTTLES AND COARSE FRAGMENTS
Abundance	OF MOTTLES AND COARSE FRAGMENTS
• Few less than 2%	- 이상가 怒리 않는
• Common 2 to 20%	15% 30%
• Many more than 20%	1% 5%
Size	20% 40%
• Fine < 5 mm	2% 7%
• Medium 5 to 15 mm	
• Coarse > 15 mm	25% 50%

30%	
40%	
50%	
e square has the	

							Contr
Contrast refers to the	Contrast Class	Code			in Color Betwe eans "different		
degree of visual distinction between associated colors			Hue (h)		Value (v)		Chroma (c)
	Faint /		$\Delta h = 0;$		$\Delta v \leq 2$	and	$\Delta c \leq 1$
	r driv, -	Ľ.,	∆h = 1;		$\Delta v \leq 1$	and	$\Delta c \leq 1$
			Δh = 2;		$\Delta v = 0$	and	$\Delta c = 0$
 Faint evident only on close examination 			Δh = 0;		$\Delta v \leq 2$	and	∆c > 1 to < 4
		Distinct 4 D		or	$\Delta v > 2$ to < 4	and	∆c < 4
	Disting 1			∆h = 1;		∆v ≤1	and
· Distinct as a dily so as at	Distinct -			or	$\Delta v > 1$ to < 3	and	Δc < 3
 Distinct readily seen at 			Δh = 2;		$\Delta v = 0$	and	∆c > 0 to < :
arms length			100	or	$\Delta v > 0$ to < 2	and	Δc < 2
	Prominent *	P	Δh = 0;		$\Delta v \ge 4$	or	$\Delta c \ge 4$
Prominent contrast			Δh = 1;		$\Delta v \ge 3$	or	$\Delta c \ge 3$
			Δh = 2;		$\Delta v \ge 2$	or	∆c ≥ 2
strongly			$\Delta h \ge 3;$				


17

Depleted Matrix

Iron removed or re-organized in profile leaving Grey matrix

- Value 4 or More
- Chroma 2 or Less

Gleyed Matrix Requirements

Gleyed Matrix

• Iron Present, but in reduced state (Fe2+) Gleyed color with value > = 4

20

Definition of a Hydric Soil

 A hydric soil is a soil that formed under conditions of saturation, flooding, or ponding <u>long enough</u> during the <u>growing season</u> to develop anaerobic conditions in the <u>upper part</u>.

Landscape and formation of hydric soils

 Landscape position Surface shape (linear, concave, convex)

 Erosional or depositional • Hydraulics

How water moves

22

Hydroperiod- seasonal pattern of water table depth in a wetland

- Long term- organic
- Seasonal inundation- thick O, dark A
- Seasonal saturation- thin O
- Floodplain- thin, stratified layers

Hydric Soil Development

Hydric soils indicators develop in anaerobic conditions by the process of :

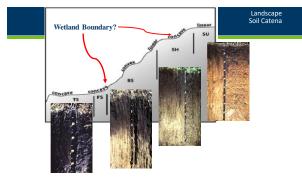
1. Reduction and Re-oxidation of Iron

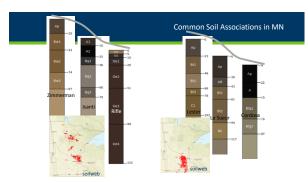
2. Organic Matter Accumulation

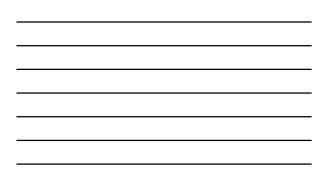
Foundation of the Field Indicator Manual.

23

Hydric Soil Development


Soil microbes that drive reduction require:


- Anaerobic conditions i.e. (saturated soil)
 Organic matter (energy source)
 Soil temperature warm enough for microbial respiration (>41F)
- 4. Duration of conditions (Time)


In anaerobic conditions decomposition slows and leads to organic accumulation

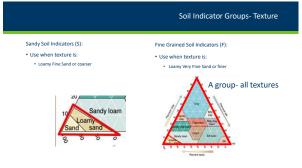
	Anaerobic process
·	Never Saturated Oxidized Matrix Infrequently Saturated Oxidized Matrix with few concentrations
•••	Frequently Saturated Oxidized Matrix with depletions And concentrations
••••	Very Frequently Saturated Depleted or Reduced Matrix With concentrations
	Permanently Saturated - depleted Or reduced matrix

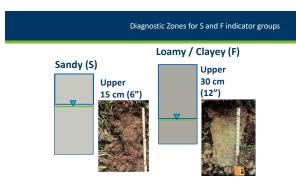
	Field Indi	cators of Hydric Soi
Natural Resources Conservation Service	United Hannes Constraints Karachi Monores Constraints In conserved with Restitioned Versional Constitioned Versional Constitioned Versional Constitioned Versional	Field Indicators of Hydric Soils in the United States A Galas for Hornbyrg and Colonating Hydric Sala, Venue 12, 2018
 National Technical 		

 National Technical Committee for Hydric Soils

Used for **on-site verification** of hydric soils

28

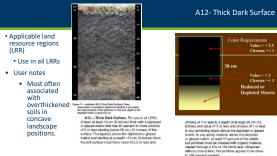

Field Indicator Organization- Regions


29

Use regardless of texture(s) All Mineral All Organic Typically, organic matter influences near the surface Includes smell Rotten egg

Percent sand

	Diagnostic Zones
 Layers with : Certain Colors high value and low chroma redoximorphic features 	Value = < 2.5 Chroma =< 1
 organic matter accumulations Specific Depths from Surface Thickness requirements 	Value ≥4 Chroma ≤ 2


A1- Histosol

- •A1. Histosol: Classifies as a Histosol. A Histosol has a layer of organic matter accumulation of \geq 16 inches in the upper 32 inches of soil material.
- Use in all LRRs

than sol

34

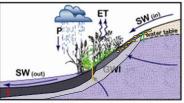
Cross Section of Hydric Soils in Depression Wetlands

Histosol

Thick dark surface

Depleted below dark surface

Surface Water - Depression



Cross Section of Hydric Soils in Sloped Wetlands

Histosol

Depleted below dark surface

Redox Dark Surface

Ground Water - Slope

40

	Com	mon Indicators for La	custrine Fringe Wetla	ands
HGM Class	Typical Water Regimes	Hydrology Indicators Common to Water Regime	Soil Indicators Common to Water Regime	
Lacustrine Fringe	Semi permanently to permanently flooded (up to 8.2')	A1- Surface Water, A2- High Water Table, B1- Water Marks, B7- Inundation Visible on Aerial Imagery, B14- True Aquatic Plants, D9- Gauge or Well Data	A1- Histosol, A2- Histic Epipedon, A3- Black Histic, A11- Depleted Below Dark Surface, A12- Thick Dark Surface	ç
		The second secon		

41

Cross Section of Hydric Soils in Lacustrine Fringe

Histosol
 Thick Dark Surface

Stearns County Soils: Origin and Nature of Parent Materials, Weathering Processes, and Landscape Position of Common Map Units

Compiled by Brad Wenz, Stearns Co. SWCD from: QUATERNARY GEOLOGY OF STEARNS COUNTY by Gary Meyer and Alan Knaeble, Minnesota Geological Survey, and the Soil Survey of Stearns County Minnesota, USDA SCS, 1985.

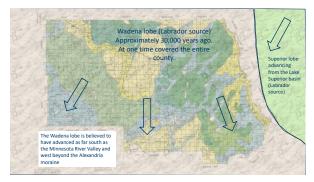
The new soil correlations are adapted to the block diagrams published in the 1985 soil survey. These adapted diagrams are considered "draft" and not for public use.

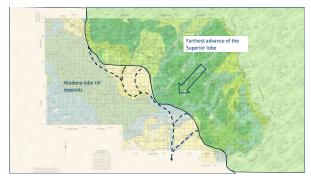
43

The soils and landscape that we see today in Stearns County are the result of the late Wisconsinan glaciation which occurred about 35,000 to 10,000 years ago.

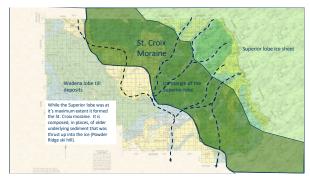
It is important to recognize the geographic origin or source of the most recent glacial advances. Their flow path across vastly different rock types created the unique textural, chemical, and biological characteristics of the associated sediment that we see today.

44

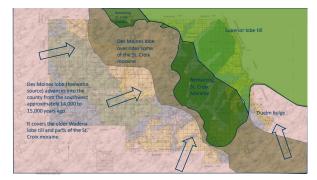

FIGURE 3.1. Approximate extent of the Laurentide ice sheet at its glacial maximum and the direction of ice flow from the Keewatin and Labrador sectors.

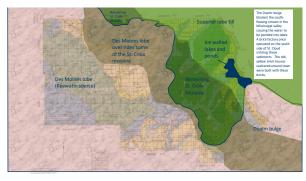

Labrador Source - Rainy River and Lake Superior basin <u>Wadena lobe till</u>: sandy texture, buff to yellow brown oxidized color, common carbonate pebbles, very little red felsite and sandstone, soft cretaceous shale is absent or rare.

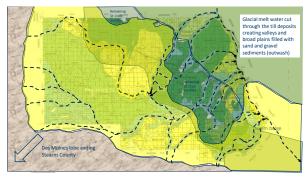
Superior lobe till: sandy, rocky texture, brown to redish brown oxidized color, rare carbonate pebbles, common red felsite and sandstone, soft cretaceous shale is absent.

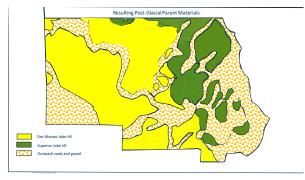

Keewatin Source – Manitoba and the Red River Valley <u>Des Moines lobe till</u>: loamy texture, yellow brown to olive brown, carbonate pebbles common to abundant, uncommon red felsite and sandstone, soft, cretaceous shale often common or abundant. Few boulders.

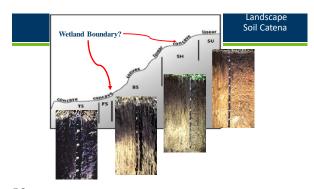

46











Post-Glacial Weathering and Soil Development

The characteristics and properties of soil are the product of the five soil forming factors: parent material, climate, living organisms, landscape position, and time.

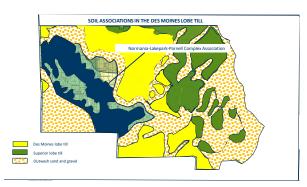
A descriptive way to present this is: *The properties of soil are due to the effect of <u>climate</u> and <u>living organisms</u> acting on <u>parent material</u> over <u>time</u> as influenced by <u>topography</u>.*

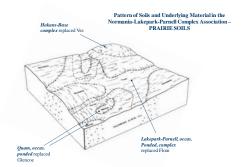
57

These 5 soil forming factors, acting in concert, influence the processes (weathering) that change the parent material into the soil that we see today.

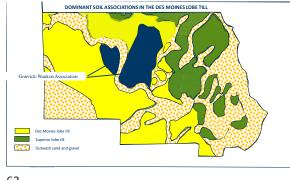
These processes are:

- Additions deposition from water, wind, mass movement, accumulation of soil organic matter, etc.
- Losses wearing away of the soil from erosion, leaching loss of minerals such as clay and carbonates, loss of soil organic matter through decay, loss of nitrogen due through gasification and leaching loss, etc.
- Translocation movement of minerals and organic mater from one part of the soil profile to another, both up and down.
- Transformation changes that take place in the soil such as chemical weathering of minerals, changes in the nature of the organic matter, and changes in the state of oxidation of iron, aluminum, and manganese.

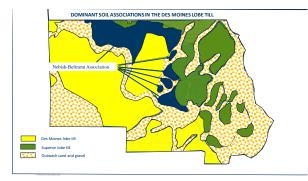

Stearns County soils have been weathering for about 10,000 years and it is an on-going process that is much influenced by human activity.


One interesting thing to note about Stearns County soils is that they include 3 major groups of formative vegetation: **prairie, forest, and savannah (prairie/forest transition or intergrade).** These are all in close proximity.


Two factors influence this the most:

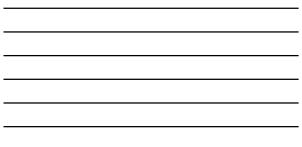

- Parent material: sandy, droughty soils tend to favor grasses over trees.
- Fire as related to topography: level to gently rolling landscapes with few entrenched valleys and drainageways, allowed fires to sweep through the landscape, killing most of the woody vegetation on a regular basis. Intermediate landscapes favored savannah.

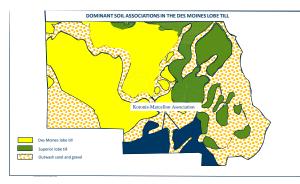
59

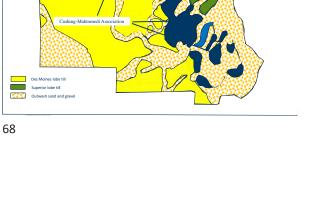


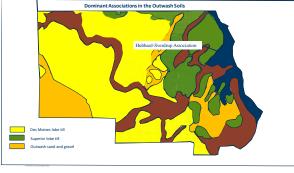
62

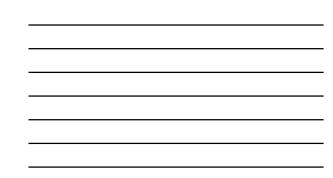
Pattern of Soils and Underlying Material in the Gonvick-Waukon Association-SAVANNA SOILS

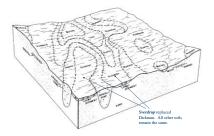


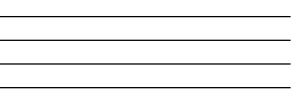


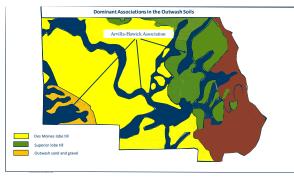


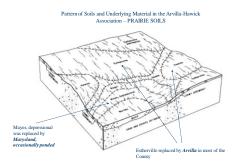



Dominant Soil Association in the St. Croix Moraine (Superior lobe till)

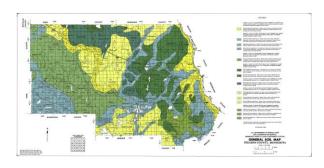


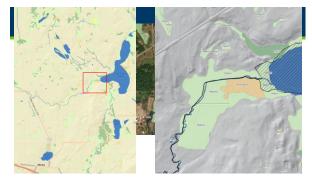


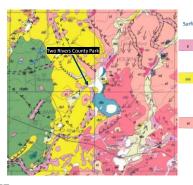



70

Pattern of Soils and Underlying Material in the Hubbard-Sverdrup Association – PRAIRIE SOILS






As we've seen, most soils in the county occupy specific positions on the landscape.

Therefore, in order to correctly use and interpret a soils map, you must first read the map unit description and acquaint yourself with the landform that best represents this map unit on the landscape.

74

Surficial Geology of Two Rivers County Park

Pead—Taritally decomposed plant matter deposited in marshes; mapped where mostly more than three feet thick. Includes fine-grained organic matter laid down in ponded water, and marl at depth in places. Also includes allowium along smaller attemus, and small bodies of open water. Many thick deposits too small to show in color are indicated by oracle.

unt were Supervised wede adjoposts.—Charity lammi-netational too Supervises these stands that, such as a granual. "Until the Supervises these stands that, such as definents of both labers are commonly present. Small areas of Supervise tobs labers are commonly present. Small areas of Supervise tobs and envisors parts of the surface are commons in the northern and environ parts of the surface are commons in the northern and environ parts of the surface are commons in other surface are characteris.

77

Parent Material Name

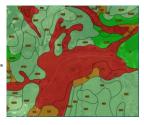
Map unit symbol	Wap unit name	Rating	Acres in AGE	Persent of ACI
20	Nebish learn, 3 to 15 percent clopes	fine-loamy til	2.0	2.25
30	Nebish loarn, 8 to 30 percent clopes	fee-loany til	4.0	4.21
S#	Nebish sandy loam, 25 to 42 percent slopes	-	1.8	2.0%
-20	Contous loans	98	6.0	0.41
14	Quan sity day team, occasionally pontied, Dto 1 percent slopes	local allovium over till	13	6.75
1948	Cushing sandy loam, 15 to 25 percent stopes	-	15.2	16.51
281	Darty marke sandy loam	outwash	1.0	1.15
ore	Densel sandy loam, 15 to 25 percent slopes	nuteration	6.0	6.51
850	Delikerineville loamy sand, il to 15 percent sliges	outerinih over till	2.8	275
69	Connea learn	water-worked sedments over 18	3.8	4.15
H0	Serijeulie-Serijeulie. ponded, complex, D1o 1 percent slopes	herbaceous organic material	33.5	26.5%
43	Markey much, occasionally ponted, D to 1 percent sitgles	hwbaceous organic material over sandy outwash	2.5	10
lee	Cathra muck, excasionally ponted, 0 to 1 percent slopes	herbaceous organic material over 18	18.3	11.25
1437	Cushing and Flak sandy kcame, steep	8	1.8	171
	Natur		8.7	7.25

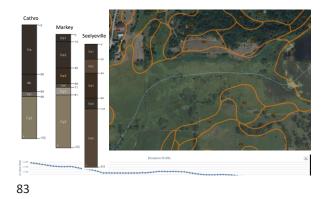
78

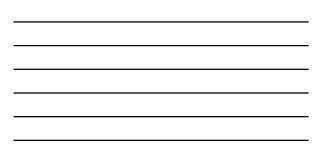
BWSR Wetland Section | www.bwsr.state.mn.us/wetlands

BWSR Wetland Section | www.bwsr.state.mn.us/wetlands

Stearns County, Minnesota 540–Seelyeville-Seelyeville, ponded, complex, 0 to 1 percent slopes Nap Unit Setting


- National may unit symbol: 2vvid Elevation: 199 to 2,000 feet to 300 feet to 300 feet Mean annual air temporators: 37 to 46 degrees 6 Prote-three period: 11.06 107 dogr Parminal classification: flut prime familiand Hay Unit Composition Seely-wills and similar asis: 55 percent Seely-wills panded, and similar asin: 55 percent Seely-wills panded, and similar asin: 55 percent
- Exempted are based on observations, descriptions, and then many service. Description of Seekyeville Setting (Andform: Depressions
 - Across-slope shape: Unear Parent material: Herbaceous organic ypical profile
 - Out 0 to 10 inches: muck Out - 0 to 10 inches: muck Out - 10 to 79 inches: muck


81


544—Cathro muck, occasionally ponded, 0 to 1 percent slopes Map Unit Setting

543—Markey muck, occasionally ponded, 0 to 1 percent slopes Map Unit Setting

540—Seelyeville-Seelyeville, ponded, complex, 0 to 1 percent sl Map Unit Setting

